Dr. Timothy S. Thomas, IFPRI, Washington, D.C. ECAMA Research Symposium, Lilongwe, Malawi, September 19, 2019

### The Future of Agriculture in Malawi with Climate Change

# Sustainability in agriculture: what does it really mean?

To an agronomist, it might refer to how nutrients and organic matter are being removed from the soil.

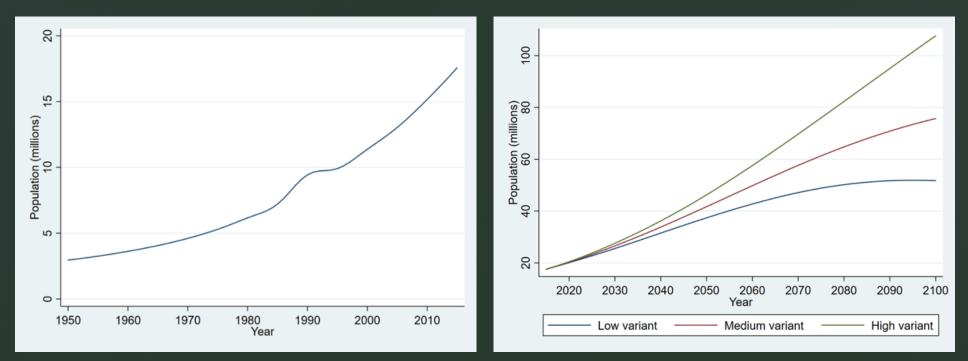
But to an economist, it is about whether expectations for the agricultural sector are more than it can deliver in the future.

What expectations?

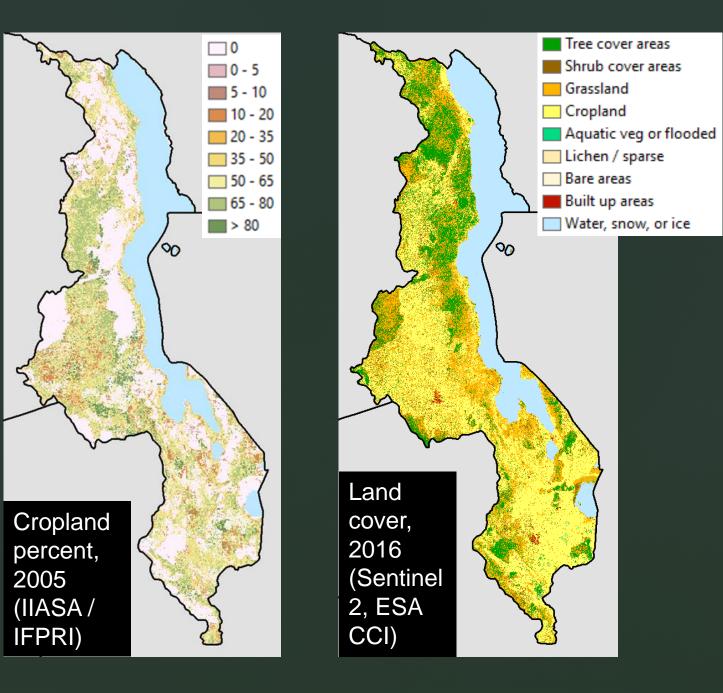
- Food security, especially for subsistence farming households
- National food self-sufficiency
- Income growth
- Employment

### Importance of agriculture for economic development

World Development Indicators tell us that in Malawi


Population is roughly 84% rural

- Agriculture contributes 31% to GDP
- 85% of employment is in agriculture


# Population growth is a critical issue affecting the sustainability of agriculture

Population of Malawi, 1950-2015

Population projections for Malawi, 2015-2100



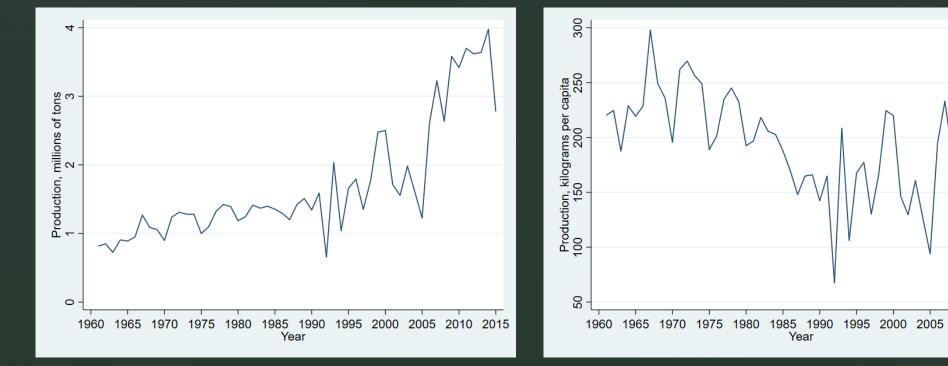
Source: UN Population Division (2018).



Land uses and constraints

### Can food production keep pace?

|             |           |            | Yield (kg |
|-------------|-----------|------------|-----------|
| ltem        | Hectares  | Production | / hect)   |
| Maize       | 1,676,875 | 3,503,241  | 2,089     |
| Groundnuts  | 365,498   | 355,315    | 973       |
| Beans       | 316,229   | 189,697    | 600       |
| Pigeon peas | 218,123   | 294,811    | 1,347     |
| Cassava     | 217,926   | 4,878,877  | 22,396    |
| Seed cotton | 177,230   | 153,652    | 840       |
| Potatoes    | 155,060   | 2,694,493  | 17,376    |
| Soybeans    | 119,364   | 117,927    | 994       |
| Chick peas  | 115,282   | 66,406     | 576       |
| Tobacco     | 114,039   | 113,057    | 1,000     |


Top ten crops in Malawi by harvested area, average 2012-2015

Source: FAOSTAT (2018)

### Has maize production kept pace?

#### Maize production, 1960-2015

### Maize production per capita, 1960-2015



#### Source: FAOSTAT (2018)

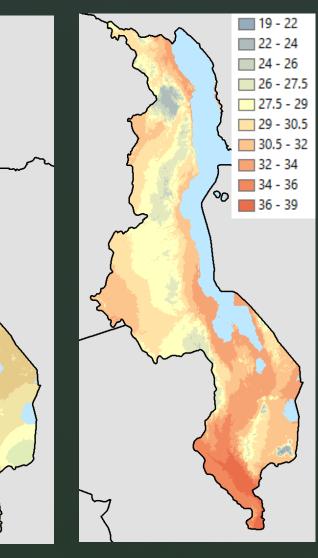
Source: FAOSTAT (2018) and UN Population Division(2018)

2015

| Looking       |
|---------------|
| deeper into   |
| recent cereal |
| performance   |

|                 | Annualize | ed growth<br>)5 to 2012 |       |
|-----------------|-----------|-------------------------|-------|
|                 |           | Har-                    | 2010  |
|                 | Produc-   | vested                  |       |
|                 | tion      | area                    | Yield |
| Sub-Saharan     |           |                         |       |
| Africa          | 3.59      | 1.47                    | 2.12  |
| Eastern Africa  | 5.43      | 1.74                    | 3.68  |
| Ethiopia        | 7.80      | 1.75                    | 6.05  |
| Rwanda          | 9.40      | 3.10                    | 6.30  |
| Middle Africa   | 5.03      | 3.41                    | 1.62  |
| Southern Africa | 2.62      | -0.60                   | 3.22  |
| Malawi          | 7.79      | 1.06                    | 6.73  |
| Mozambique      | 3.30      | 0.95                    | 2.35  |
| South Africa    | 1.14      | -2.71                   | 3.86  |
| Zambia          | 10.20     | 5.55                    | 4.65  |
| Western Africa  | 2.49      | 1.55                    | 0.94  |

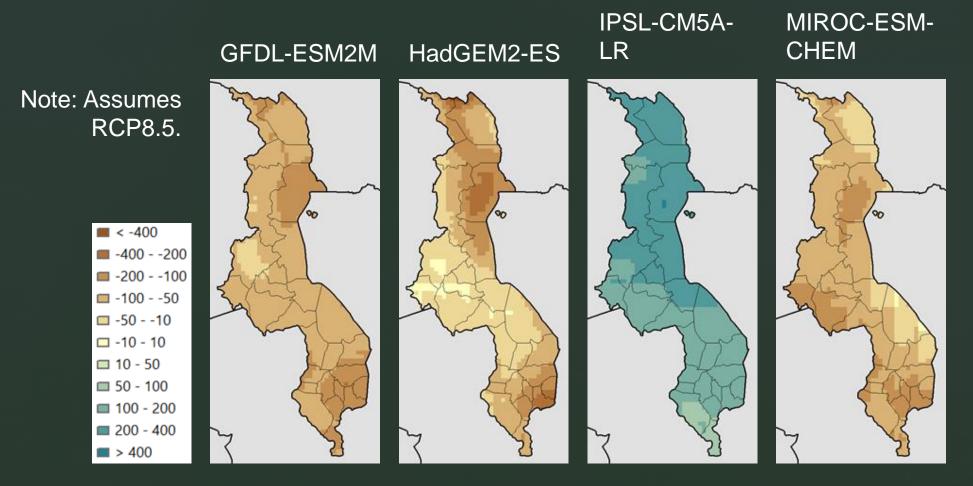
Source: FAOSTAT (2018) Mean annual precipitation, mm


SO.

500 - 800 800 - 1,100 1,100 - 1,400

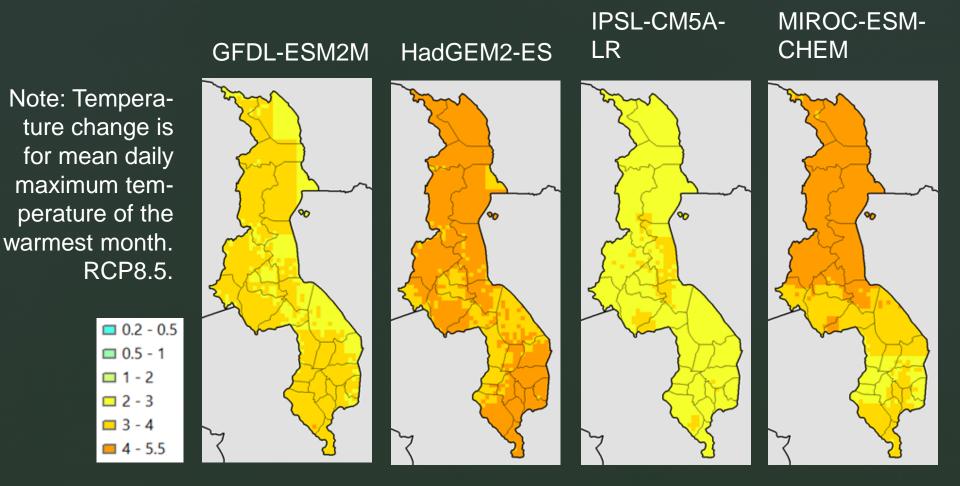
1,400 - 1,650 1,650 - 1,900

1,900 - 2,250


Mean daily maximum temperature of the warmest month, <sup>0</sup>C



Historical climate, 1960-1990


Source: WorldClim 1.4 (Hijmans et al.

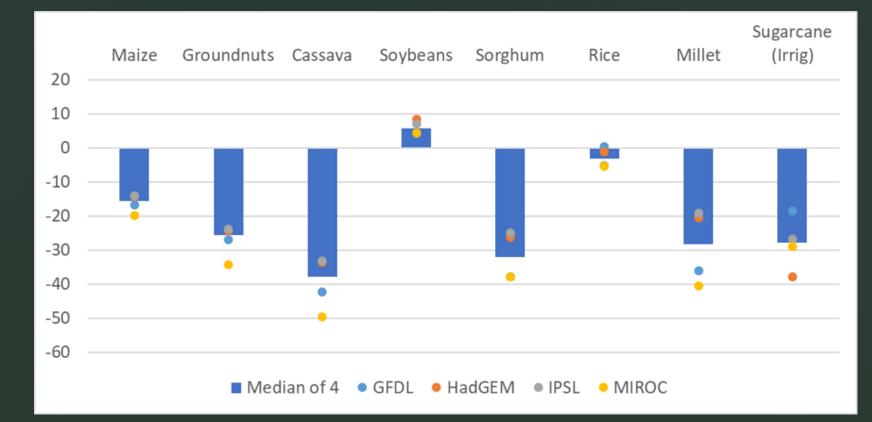
### Projections for precipitation change in Malawi, mm, from 1960-1990 period to 2050



#### Source: Müller and Robertson (2014).

#### Projections for temperature change in Malawi, <sup>0</sup>C, from 1960-1990 period to 2050




Source: Müller and Robertson (2014).

# Distribution of climate change projections across 32 models, RCP8.5, baseline to 2050

|             | Change in annual rainfall, mm, percentiles across            |      |      |     |     |     |       |  |
|-------------|--------------------------------------------------------------|------|------|-----|-----|-----|-------|--|
|             | 32 GCMs in average for 1960-1990 to 2050                     |      |      |     |     |     |       |  |
| Base (1960- |                                                              |      |      |     |     |     | 100   |  |
| 1990)       | 0 (min)                                                      | 10   | 25   | 50  | 75  | 90  | (max) |  |
| 1,089       | -318                                                         | -177 | -106 | -53 | 22  | 61  | 333   |  |
|             |                                                              |      |      |     |     |     |       |  |
|             | Change in mean daily maximum temperature of the              |      |      |     |     |     |       |  |
|             | warmest month, <sup>0</sup> C, percentiles across 32 GCMs in |      |      |     |     |     |       |  |
|             | average for 1960-1990 to 2050                                |      |      |     |     |     |       |  |
| Base (1960- |                                                              |      |      |     |     |     | 100   |  |
| 1990)       | 0 (min)                                                      | 10   | 25   | 50  | 75  | 90  | (max) |  |
| 30.7        | 1.8                                                          | 2.9  | 3.1  | 3.3 | 3.8 | 4.3 | 4.8   |  |

Source: CCAFS/CIAT.

## Crop models showing median yield change from baseline to 2050



Source: Authors based on Rosenzweig et al. (2014) using weights from MapSPAM harvested area (You et al. 2014).

### **IMPACT Model**

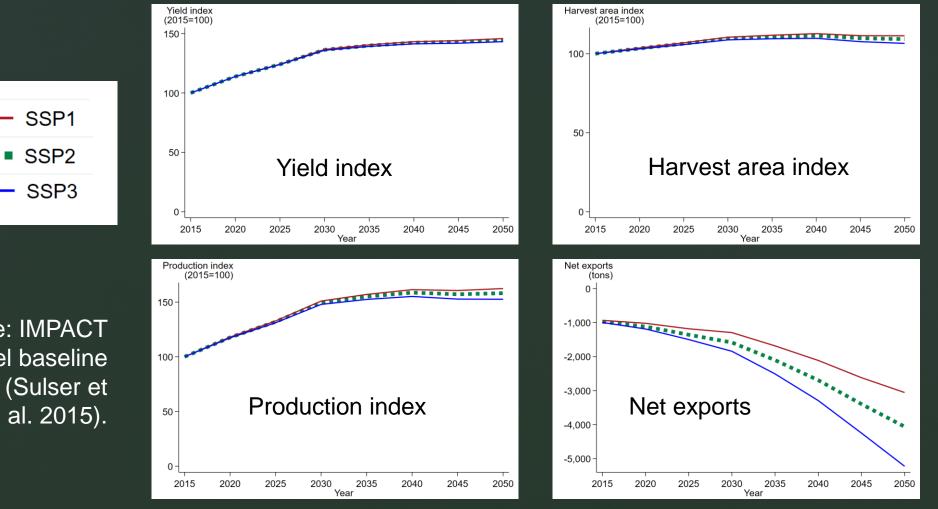
• Global model of food and agriculture

• Multi-market, partial equilibrium model

| Geographic       | Commodity    | Time      | Linked Models and Modules   |
|------------------|--------------|-----------|-----------------------------|
| Scope            | Scope        | Scope     |                             |
| 159 countries    | 62 total     | 2005-2050 | Crop (DSSAT)                |
| 154 water basins | 39 crops     |           | Food Security               |
| 320 FPUs         | 6 livestock  |           | Land-Use                    |
|                  | 17 processed |           | Livestock                   |
|                  |              |           | • Value chains (processing) |
|                  |              |           | Water                       |
|                  |              |           | Welfare Analysis            |

### The future of maize in Malawi under climate change, 2005-2050




Source: IMPACT model baseline results (Sulser et al. 2015).

**IPSL** 

GFDL

**MIROC** HadGEM

### The future of maize in Malawi under different. SSPs (growth scenarios), 2005-2050



Source: IMPACT model baseline results (Sulser et

### Climate change effects on yield, area, and production of leading crops in Malawi, 2050, RCP8.5, SSP2

|                | Yield index |     | Area index |     |     | Production index |     |     |     |
|----------------|-------------|-----|------------|-----|-----|------------------|-----|-----|-----|
|                | No          | Low | H          | No  | Low | H                | No  | Low | Hi  |
| Commodity      | СС          | CC  | CC         | CC  | CC  | CC               | CC  | CC  | CC  |
| CER-Maize      | 145         | 127 | 133        | 109 | 112 | 121              | 158 | 149 | 156 |
| CER-Millet     | 218         | 201 | 226        | 188 | 170 | 209              | 410 | 359 | 466 |
| COT-Cotton     | 160         | 149 | 157        | 142 | 138 | 144              | 228 | 206 | 227 |
| OLS-Groundnut  | 115         | 90  | 101        | 139 | 143 | 159              | 160 | 129 | 156 |
| OLS-Soybean    | 95          | 80  | 100        | 85  | 84  | 85               | 80  | 67  | 85  |
| PUL-Beans      | 144         | 126 | 134        | 142 | 129 | 141              | 205 | 166 | 189 |
| PUL-Chickpeas  | 156         | 136 | 146        | 137 | 131 | 137              | 214 | 177 | 198 |
| PUL-Pigeonpeas | 152         | 131 | 142        | 134 | 125 | 130              | 203 | 164 | 184 |
| R&T-Cassava    | 120         | 114 | 119        | 135 | 132 | 135              | 162 | 150 | 159 |

Source: IMPACT model baseline results (Sulser et al. 2015). Note: An index of 100 is the level calculated for 2010.

### Climate change effects on net exports of leading crops in Malawi, 2050, RCP8.5, SSP2

|                             |                | Change in | net export | s (tons) |
|-----------------------------|----------------|-----------|------------|----------|
|                             |                | No        | Low        | Hi       |
|                             |                | CC        | CC         | CC       |
|                             | Commodity      |           |            |          |
|                             | CER-Maize      | -4,060    | -3,764     | -3,006   |
|                             | CER-Millet     | 24        | 6          | 47       |
|                             | COT-Cotton     | 180       | 157        | 179      |
|                             | OLS-Groundnut  | -104      | -130       | -68      |
|                             | OLS-Soybean    | -181      | -180       | -177     |
|                             | PUL-Beans      | -200      | -238       | -203     |
|                             | PUL-Chickpeas  | -32       | -45        | -35      |
| Source: IMPACT model        | PUL-Pigeonpeas | -14       | -63        | -36      |
| baseline results (Sulser et | R&T-Cassava    | 106       | -147       | 121      |
| al. 2015).                  | SGR-Sugar      | -311      | -400       | -267     |

### Conclusions

 Population growth appears to be a bigger challenge to agricultural sustainability than climate change.

- Climate change will generally adversely affect agriculture, especially in 2050-2100.
- Economic models are required to fully understand the effect of climate change, since the changes in global food demand and supply occur simultaneously with climate change.

### Conclusions (2)

 How to make agriculture sustainable in the light of rapid population growth requires more thought and bold action.

- Developing markets and assisting farmers to move into highervalue and labor-intensive crops is one solution.
- Expansion of irrigation could be very helpful in reducing year-toyear variability and increasing yields and should serve to reduce aflatoxin contamination in drier years.

### Acknowledgments

 This work was implemented and undertaken as part of the CGIAR Research Program on Policies, Institutions, and Markets (PIM) led by the International Food Policy Research Institute (IFPRI). PIM is in turn supported by donors. For details please visit http://pim.cgiar.org/donors/.



