

Part II

Agricultural Support for Sustainable Food Systems under Climate Change: Implications for Malawi

Rui Benfica

Senior Research Fellow, IFPRI

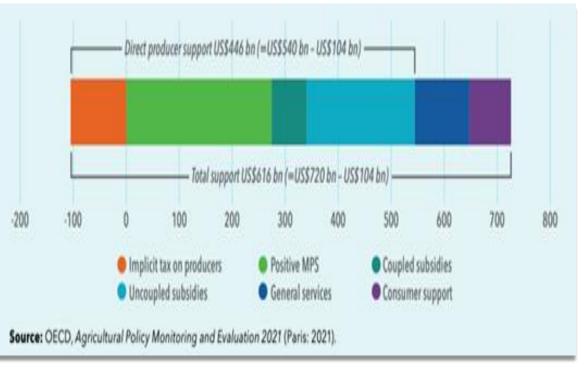
International Food Policy Research Institute

June 14, 2022

Agricultural Support for Sustainable Food Systems under Climate Change

- 1. Chapter 2: Repurposing Agricultural Support: Creating Food Systems Incentives to Address Climate Change
- 2. Chapter 4: Agricultural Research and Innovation for the Future: Investments for Efficiency, Sustainability, and Equity
- 3. Relevance and Implications for Malawi

1. REPURPOSING AGRICULTURAL SUPPORT


Creating Food Systems Incentives to Address Climate Change

- Agricultural support policies provide enormous transfers of resources to farmers and enjoy strong political support in both developed and developing countries.
 - Agricultural support policies, such as input subsidies boost global food production, particularly of staple crops, thereby reducing hunger and poverty.
 - Yet, there are serious concerns about their impacts on achieving sustainable, healthy, and inclusive food systems.

CURRENT AGRICULTURAL SUPPORT AND IMPLICATIONS (1)

- Currently (globally), agricultural support goes largely to producers, primarily in forms that affect market prices and distort incentives for producers and consumers
- Efficiency in delivering benefits to farmers is low, only 35%.
- Climate change implications
 - Support to production or input use increases output leading to increased GHG emissions
 - Support through trade barriers reduces GHG emissions by reducing output demand

Agricultural producer support by main types of support 2018–2020 (billions of US\$ per year)

CURRENT AGRICULTURAL SUPPORT AND IMPLICATIONS (2) Effects on food security, nutrition and equity

- The strong focus on promoting staple crops has improved access to basic calories but has not done much to improve dietary diversity.
- Impacts are often regressive benefiting wealthier commercial farmers, while denying poorer farmers access to markets.
- Support through trade protection, raises the cost of food and harm poor consumers.

REFORM OPTIONS AND IMPLICATIONS (1)

Reform options

- 1. Abolition of all support (both subsidies and border support)
- 2. Target support to CO₂ efficient crops
- 3. Repurposing for sustainable innovation and rural livelihoods
- 1. <u>Simply abolishing all support</u> would involve trade-offs between environmental, economic, social objectives.
 - Slightly reduces global output and GHG emissions from agriculture
 - Lowers farm output and raises the cost of healthy diets
 - Virtually no effect on poverty
- BUT impacts differ substantially between developed and developing countries:
 - Drop in farm income per worker 4x larger in developed countries
 - Farm employment decline in developed, but increases in developing countries, as higher world prices induce supply
 - BUT poverty increases in developing countries due to the higher prices (food price dilemma!)
 - GHG emissions drop by over 6% in developed countries, but worldwide they would fall by only 1.5% as agricultural
 production shifts to developing countries.

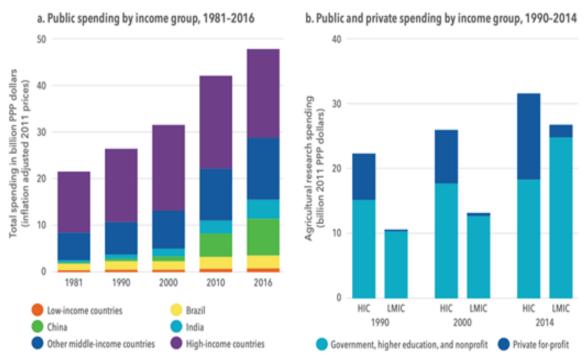
REFORM OPTIONS AND IMPLICATIONS (2)

- <u>Targeting only CO₂ efficient crops</u> does not hold the best outcomes
- 3. <u>Repurpose subsidies</u> in ways that would make progress toward achieving global climate and food security goals.
- Investing an additional 1% of Agricultural GDP in R&D could achieve greater gains with fewer trade-offs than simply eliminating subsidies.
 - BUT that would require
 - Shifting resources from market-distorting subsidies to spending on R&D that increase productivity and reduce emissions; and
 - Support/create incentives for farmers to adopt those productivity enhancing technologies.

Global implications of repurposing domestic support

Source: M. Gautam, D. Laborde, A. Mamun, W. Martin, V. Piñeiro, and R. Vos, Repurposing Agricultural Policies and Support: Options to Transform Agriculture and Food Systems for Better Health of People, Economies and the Planet, Technical Report (Washington, DC: World Bank and IFPRI, 2022). Note: Green bars indicate movement toward societal goals; orange/red bars indicate movement away from societal goals.

REFORM OPTIONS AND IMPLICATIONS (3)

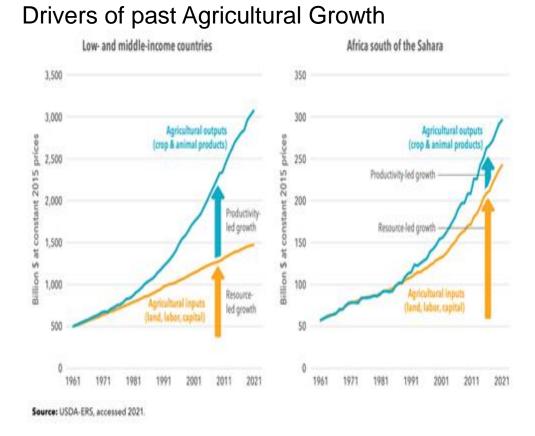

- Inefficient targeting also imply that resources may have high opportunity costs, and potentially harmful environmental impacts
- So, redirecting/ "repurposing" agricultural subsidies to investments that support increased production and greater sustainability, such as agricultural R&D and infrastructure have the potential for win-win-win for people, planet, and prosperity.
- Given the current domestic popularity of support policies, even the best reform agenda can face considerable political hurdles – political economy issues.

2. Agricultural RESEARCH FOR THE FUTURE Investments for Efficiency, Sustainability, and Equity

- Agricultural Research and Innovation are critical in two main ways
 - To increase agricultural productivity in the face of climate change
 - To transform global Agri-Food Systems (AFS) through improved efficiency and resilience in achieving social, economic, nutritional, and environmental goals.
- GFPR analysis reviews
 - Patterns of research investment for AFS over the past half century
 - How research and innovation need to evolve to address climate change and the host of challenges facing food systems
- Along with reproposing of agricultural support, this is a critical issue for Malawi

THE CHANGING AGRICULTURAL RESEARCH ENVIRONMENT

- Over the past 50 years, LMICs have benefited from considerable improvements in agricultural productivity, with positive impacts on poverty reduction and nutrition.
- Global public agricultural research investment doubled 1981-2016
 - Investments by larger MICs expanded substantially in recent decades
 - BUT investments in smaller LMICs, are still too small to address future impacts of climate change across food systems.
- The size of private sector remains relatively small in LMICs, BUT some commodities in MICs private R&D are relevant for LMICs.


Long-term trends in agricultural research spending

Source: Public sector data compiled from ASTI (https://www.asti.cgiar.org/data); private sector data from K. Fuglie, The Growing Role of the Private Sector in Agricultural Research and Development World-Wide," Global Food Security 10 (2016): 29-38.

Note: Income group classifications are based on the situation in 2019. HIC = high-income countries; LMIC = low- and middle-income countries.

PRODUCTIVITY GROWTH REMAINS A PRIORITY

- Agricultural productivity growth will remain a priority to meet development goals and address climate change.
- Productivity led-growth has been increasingly important in LMICs, but SSA output growth is still largely resource-led
- To meet global food demand, agricultural productivity needs to growth at a faster rate (1.28 % per year, currently only 0.96% in SSA)
- Productivity must be boosted through yield increases, more efficient use of scarce resources, and a reduction in crop losses, rather than greater use of natural resources.

NEED FOR GREATER AND BETTER TARGETED INVESTMENTS

Greater Agricultural R&D Investment is needed in LMICS

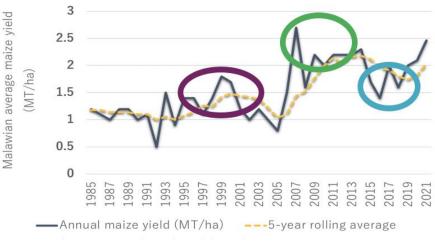
- At the Global level, \$1 invested in R&D gives \$10 in stream of benefits later
- Significant investment gap in LMICs just 50 percent of attainable investment levels in 2016
- Underinvestment is prevalent in countries with small and medium-size research systems
- Closing the LMIC investment gap will require sustained investment growth in large countries and accelerated growth in other countries with large research systems
 - Continued reliance on public domestic and international agricultural research
 - With greater cooperation and coordination, countries with lagging research systems also benefit.
- R&D must also target sustainability and resilience
 - Currently only 7% of R&D investments in LMICs targets sustainable intensification
 - Research and innovation need to focus on healthier and more sustainable diets
 - Invest in technologies that reduce emissions and increase smallholder resilience to climate change

INNOVATION IN AGRICULTURAL R&D AND DOWNSTREAM VCs

Innovation in Agricultural Technologies is crucial

Adaptation

- Promising agricultural technologies such as precision agriculture, biofertilizers, and genome editing accelerate productivity growth without adding to pressures on natural resources
- New breeding techniques that can help crops and animals be more tolerant of heat stress and pests.
 Mitigation
- The technologies and practices currently available are insufficient to mitigate global warming.
- Land-based mitigation technologies (reforestation, intercropping, etc.) coupled with reduction in non-CO2 gas emissions like methane, play an important role
- Food waste and loss, which generate 8 to 10 percent of global GHG emissions, must be addressed.
- More focus is needed on downstream value chains
 - Implications of climate change for downstream components of food systems largely unexplored.
 - R&D investment for downstream technologies will need higher profile under climate change and development of food systems – increase efficiency, profitability while dealing with the environment


3. Relevance and implications for Malawi

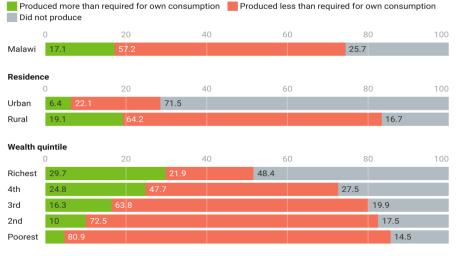
- Why is this study relevant for Malawi?
 - Significant part of the agricultural budget in Malawi directed to the Affordable Inputs Program (AIP)
 - While some stated objectives are achieved in the short run, challenges remain for long term sustainability
 - There is an opportunity to reform and "Repurpose Agricultural Subsidies" for better sustainable development results including addressing climate change

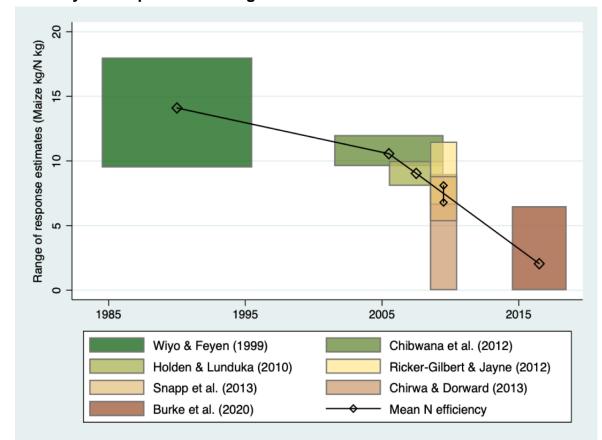
AIP MOTIVATION, ACHIEVEMENTS AND CHALLENGES

- The Malawi AIP aims to address low productivity, slow growth, food insecurity and malnutrition, and poverty
- Average household maize yields increased over 60% from 1995-2004 (1.3 MT/ha) to 2005-2014 (2.1MT/ha), though still volatile to external shocks [graph]
- Given relative improvements in output growth, food security and nutrition, subsidy programs have been maintained with varying designs and coverage.
- Key challenges
 - Many households produce less than they need and are hurt by high food prices.
 - Unsustainable and inefficient subsidy allocations
 - Declining yield response to fertilizer and falling soil fertility
 - Ineffective targeting of beneficiaries

Source: Source: APES and FAOStat, by MwAPATA Institute.

Malawian households by maize production (%)



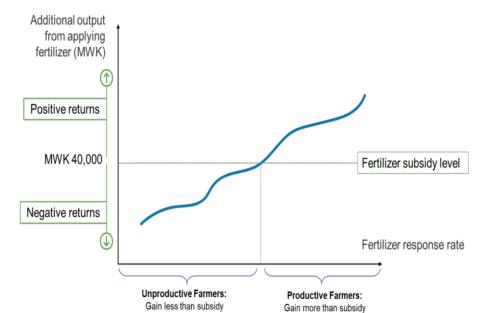

Chart: Jan Duchoslav • Source: Fifth Integrated Household Survey 2019-2020 • Created with Datawrapper

DEAL WITH UNSUSTAINABLE AND INEFFICIENT SUBSIDY ALLOCATIONS

- AIP Subsidy levels and allocations averaging roughly over 60% of MoA budget
- Substantial costs of operation for delivery
- Two crowding-out effects
 - AIP crowds-out other important agricultural investments, such as R&D, Extension, irrigation, Livestock.
 - AIP crowds-out supplies from commercial input markets [15 20% displacement]
- Current focus on maize limits crop diversification and the maximization of goals related to income and dietary diversity.

ADDRESS THE DECLINE IN YIELD RESPONSE TO FERTILIZERS

- There has been declining soil fertility and yield response to fertilizer [graph]
 - Sustained yield response only with good rains and adequate agricultural practices
- This calls for investments in irrigation, R&D (soil quality and genetic innovations), and extension.



Maize yield response to Nitrogen fertilizer in Malawi

Source: MwAPATA Institute.

TARGETING OF BENEFICIARIES CAN BE IMPROVED

- Current targeting aimed at food security and poverty results in poor targeting
- Current ineffective targeting
 - Reduces the cost-effectiveness of AIP
 - Limited returns to resource poor farmers [graph]
- Effective targeting strategy
 - Target primarily productive farmers
 - Reach resource poor (less productive) farmers through social protection (cash transfers)
 - Operationalize self-targeting mechanisms: Choice between higher amount in AIP Input vouchers vs. lower amount in cash.

Source: De Weerdt and Duchoslav.

Economic Returns to fertilizers, by farmer type

CONCLUSION

- Malawi can repurpose its agricultural support to maximize development objectives
 - The agricultural budget needs to be "rightsized" to balance the resources allocated to the AIP with complementary investments in R&D, extension and irrigation to address productivity, efficiency and environmental sustainability.
- Agricultural support programs such as AIP need to ensure production diversity (beyond maize) to support income growth and dietary diversity.
- Policies, investments that advocate for a progressive AIP are in the right direction
 - These should improve targeting mechanisms based on incentives
 - Support resource poor farmers through transitory social protections measures
- Lastly, the country needs to continue to invest in infrastructure, services, and a regulatory that support the development of sustainable value chains.

Zikomo kwambiri!