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Motivation

The majority of people in developing countries live in rural areas, 
and most of them depend on agriculture for their livelihoods 
(IFAD, 2016).

Food security for these smallholder farmers was greatly 
improved by the Green Revolution of the 1950s and 1960s.

Input intensification, of which fertilizer plays a key role, has 
accounted for 60% of agricultural output increases since 1960 in 
developing countries (Fuglie, 2018).

IFAD. (2016). Rural development report 2016: Fostering inclusive rural transformation.
Fuglie, K. O. (2018). Is agricultural productivity slowing?. Global food security, 17, 73-83.
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Motivation

But benefits of fertilizer have not been uniformly distributed

Since 1960, regions 
experiencing a Green 
Revolution, have 
increased fertilizer 
use by
• South Asia: 56x
• East Asia: 17x
• Latin America: 10x

In Africa, where 
yields have 
stagnated, 
fertilizer use has 
only grown 5x

Smith, J. S., Gardner, C. A. C., & Costich, D. E. (2017). Ensuring the genetic diversity of maize and its 
wild relatives. Achieving sustainable cultivation of maize, 1, 3-50.
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Motivation

Low fertilizer 
adoption rates in 
Africa are not for 
lack of effort.

In recent decades, 
expenditures on 
fertilizer subsidy 
programs in the 10 
largest African 
countries have 
accounted for 14-
26% of their 
agricultural 
expenditures 
(Jayne et al., 2018).

Jayne, T. S., Mason, N. M., Burke, W. J., & Ariga, J. (2018). Taking stock of Africa’s second-
generation agricultural input subsidy programs. Food Policy, 75, 1-14.
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Research Questions and Hypotheses

Africa’s large scale trends raise questions:

• Why is fertilizer adoption so low in Africa? 

• Could fertilizer subsidy programs be better targeted?

• Would other initiatives be more effective than subsidies?

Our hypothesis:

- Fertilizer adoption is low because using fertilizer is not profitable

We seek to:

1) understand variability of fertilizer use profitability from year to 
year and location to location

2) Inform targeting that could improve profitability
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Mapping Soil Profitability in sub-Saharan Africa

We quantify the Internal Rate of Return (IRR) as:

𝐼𝑅𝑅 =
𝑝𝑦Δ𝑦 − 𝑝𝑓Δ𝑓(1 + 𝑟)

𝑝𝑓Δ𝑓(1 + 𝑟)

were 

• 𝑝𝑦 is the price of crop 𝑦,

• Δ𝑦 is the change in yield of crop 𝑦 resulting from applying Δ𝑓, and

• 𝑝𝑓 is the price of fertilizer,

• Δ𝑓 is the amount of applied fertilizer,

• r is the interest rate

IRR need only exceed 0 for fertilizer to be profitable. 

But farmers must decide whether or not to purchase fertilizer at the 
beginning of the growing season, before they know either their 
weather-dependent yield return, Δ𝑦, or the crop price at the end of 
the season, 𝑝𝑦.

?
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Robust Profitability

Many studies assume farmers will adopt fertilizer if average IRR 
is above a target T (say IRR>30%).

We instead assume farmers will adopt fertilizer if they can expect 
an IRR > T at least p% of the time (say 70%).

To estimate this throughout Africa, we need to understand:

1) The yield response to fertilizer adoption as a function of soil 
and weather conditions

2) Spatiotemporal soil, weather, and prices
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Data to assess yield response to fertilizer: Maize trials

Several field studies throughout 
Africa between 1999-2007 and 
2013-2016 have performed maize 
production trials in which no N 
management regime and an 
optimal-N management regime 
(120-125 kg/ha) were applied with 
15-18 kg P/ha in both treatments.

We use these datasets to estimate 
the maize yield return of applying 
optimal-N fertilizer.
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Data to assess yield response to fertilizer: Soils

We expect the yield response to fertilizer to vary spatially and 
temporally based on soil and weather conditions.

For example, soil organic carbon (SOC) influences soil structure 
and retention of soil moisture and nutrients like N.

Marenya, P. P., & Barrett, C. B. (2009). State‐conditional fertilizer yield response on western 
Kenyan farms. American Journal of Agricultural Economics, 91(4), 991-1006.
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Data to assess yield response to fertilizer: Soils

We expect the yield response to fertilizer to vary spatially and 
temporally based on soil and weather conditions.

E.g., soil pH influences the ability of SOC and minerals to retain 
nutrients, with fertilizer-mineral interactions typically weakened 
as soils become more acidic (Sarkar and Wynjones, 1982).

In researcher-managed fertilizer trials in East Africa, fertilizer 
response was higher in clayey soils than sandy soils (Tully et al., 
2016).

Sarkar, A. N., & Wynjones, R. G. (1982). Effect of rhizosphere pH on the availability 
and uptake of Fe, Mn and Zn. Plant and Soil, 66(3), 361-372.

Tully, K. L., Hickman, J., McKenna, M., Neill, C., & Palm, C. A. (2016). Effects of 
fertilizer on inorganic soil N in East Africa maize systems: vertical distributions and 
temporal dynamics. Ecological Applications, 26(6), 1907-1919.
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Soil data at 250 m resolution from African Soil 

Information Service (AfSIS)
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Data to assess yield response to fertilizer: Climate

Most farmland in sub-Saharan Africa is rainfed, and fertilizer 
response decreases with increasing water stress during the 
growing season (Haefele et al., 2006).

Negative relationships between temperature and African maize 
yields, but N application can mediate the effects of heat stress 
(Lobell et al., 2011).

We obtain precipitation and temperature data at 0.5-degree 
resolution from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) between 1979-2018.

Haefele, S. M., Naklang, K., Harnpichitvitaya, D., Jearakongman, S., Skulkhu, E., Romyen, P., ... & 
Wade, L. J. (2006). Factors affecting rice yield and fertilizer response in rainfed lowlands of 
northeast Thailand. Field crops research, 98(1), 39-51.

Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on 
African maize as evidenced by historical yield trials. Nature climate change, 1(1), 42-45.
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Data to assess profitability: Maize and urea prices

Maize and urea prices were obtained 
from the FAO Global Information and 
Early Warning System (GIEWS) dataset 
as far back as 2000, and urea prices 
from https://africafertilizer.org/local-
prices/

We modeled prices at location i and 
time t (𝑝𝑖𝑡) as a log-fraction of the 
world price at time t (𝑝𝑤𝑡) for maize 
(m) and urea (u) using a linear 
regression:

ln
𝑝𝑖𝑡
𝑚

𝑝𝑤𝑡
𝑚 = 𝛼𝑖

𝑚 + 𝛽1mkt + 𝛽2yr + 𝛽3yr
2 + 𝛽4m𝑜 ∗ cntry

ln
𝑝𝑖𝑡
𝑢

𝑝𝑤𝑡
𝑢 = 𝛼𝑖

𝑢 + 𝛾1yr + 𝛾2yr
2 + 𝛾3m𝑜 ∗ cntry

Location-dependent intercepts and their standard error were 
Kriged to interpolate prices outside market locations.

https://africafertilizer.org/local-prices/
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Estimation:
• Causal forest model to estimate the maize yield response to 

optimal-N using trial data
• Predictors: site-level soil characteristics and site-year level 

climate characteristics
• Not all trial sites used fertilizer exclusion – we balance with 

propensity weights
• We minimize the standard error on predictions in each site 

where the estimation does not use that site or year (avoid 
overfitting fertilizer response model to the data)

Validation
• Compare our out-of-sample yield predictions to those from a 

FGLS regression model (selecting variables stepwise from all 
main effects and interactions using 5-fold cross-validation)

Methods:  Yield response to fertilizer
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Results:  Yield response to fertilizer

Causal Forest Random 
Forest

FGLS

Ave predicted yield, F=0 (t/ha) 3.01 2.45

(0.07) (0.84)

Ave predicted yield, F=1 (t/ha) 4.27 4.51

(0.18) (0.70)

Predicted fertilizer response (t/ha) 1.49 1.26 2.07

(0.13) (0.12) (0.52)

RMSE 2.26 5.20
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Results:  Yield response to fertilizer

Most important yield response 
predictor: precipitation in the first 
period of the growing season, 
followed by % clay and soil pH.
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Results:  Yield response to fertilizer

Fertilizer response exhibits 
a generally positive linear 
relationship with 
precipitation, soil N, and 
soil clay.

And an inverted U-shaped 
relationship with 
temperature and soil pH.

Other variables do not 
show strong relationships 
with the response, but 
may interact with other 
predictors.
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Fertilizer:maize price ratio required to meet 

profitability conditions
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Profitability distribution estimation

We estimate the profitability distribution at each site using a 
1000-yr Monte Carlo simulation.

Generate a synthetic climate dataset (lag-1 autocorrelation) 
using historical data (1979-2018) and projecting linear trends.

Predict random errors in the yield response using standard error 
of the out-of-sample casual forest prediction

Predict random errors in output prices from a normal 
distribution with mean α and standard deviation s(α).
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Profitability findings

The average yield response to fertilizer exhibits great spatial 
variation (a), and the profitability of that return exhibits 
differential temporal variability across sites (b).
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Profitability findings

Using a definition for “robust profitability” of IRR>0.3 in at least 
70% of simulations, 3 of 10 randomly selected maize trial sites 
fail to meet this threshold (2510, 922, 1037).
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Profitability findings

How does this definition of being “robustly profitable” 
(P 𝐼𝑅𝑅 > 0.3 > 0.7) compare with a “naïve” definition 
assuming profitability simply if 𝔼 𝐼𝑅𝑅 > 0.3?

Using a naïve profitability definition based on mean yield 
response to fertilizer classifies 12.5% of sites as profitable that 
our robust definition does not and vice versa.
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Implications for targeting

We can use the previous map to target fertilizer promotion 
efforts where they are robustly profitable. 

But why is profitability low in so may places?

We perform a local, one-at-a-time sensitivity analysis perturbing 
each site’s soil conditions and simulated weather and prices by 
+5% and -5%.

For each pixel, we find which variable elicits the greatest 
absolute change in yield response and IRR when it is perturbed.
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Variable with greatest average effect across1000 

Monte Carlo simulations

The variable to which most pixels’ yield response is most sensitive is soil pH 
(51%), followed by other soil characteristics (31%), temperature (14%), 
precipitation (2%), and elevation (2%).

Precipitation is the most important predictor in the causal forest model, but 
explains more spatial variability than local temporal variability. Soil pH can be 
improved with interventions
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Variable with greatest average effect across1000 

Monte Carlo simulations

The robustly profitable locations are most influenced by temperature 
and other soil variables than pH.

The areas sensitive to temperature should be monitored, as their 
robust profitability may change in the future as temperatures continue 
to warm.
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Variable with greatest average effect across1000 

Monte Carlo simulations

Locations that are never profitable are primarily sensitive to soil 
pH, suggesting soil amendments such as liming could make 
maize yields more responsive to fertilizer applications.
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Variable with greatest average effect across1000 

Monte Carlo simulations

Moving to profitability, we see prices take over as the most 
dominant factor (40% of pixels), followed by soil pH (38%), other 
soil variables (19%), temperature (2%), elevation (1%) and 
precipitation (0%).
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Variable with greatest average effect across1000 

Monte Carlo simulations

Prices are primarily dominant in the regions that are already 
profitable, but there a few locations in the never profitable 
region where prices overcome soil pH as most important, 
suggesting subsidies could be promising in conjunction with soil 
amendments there.
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Variable with greatest effect in individual simulations

We can also see how this sensitivity changes across different simulated years, 
moving from low to high yield differences/IRRs.

The most important factor explaining the yield response does not change 
significantly across its distribution, but prices becomes more important as IRR 
increases, suggesting subsidies are less helpful in critical low IRR years.
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Conclusions

It is important to understand uncertainty in yield response to fertilizer, 
and what variables are controlling it, to inform economic and soil 
health interventions.

Using a naïve profitability definition based on mean yield response to 
fertilizer classifies 12.5% of sites as profitable that our robust definition 
does not and vice versa.

Furthermore, we find price sensitivity is most prominent in areas that 
are already profitable, limiting the potential for subsidies to improve 
adoption.

But there could be great potential to improve adoption through 
targeted soil amendments.


